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Abstract 
Development, features, and use of a tool for inverse         
energy modeling for a portfolio of municipal buildings is         
described. The tool is software-automated to enable       
batch-processing. Statistical fitness is automatically     
evaluated to provide a baseline for energy retrofit        
program measurement and verification. Particular     
attention is paid to tool outputs that support use by an           
end user, such as an energy manager, for initial facility          
diagnostic purposes to guide further investigation.  

Introduction 
This paper examines how large quantities of property        
portfolio energy data can be effectively modeled and        
presented for use by energy management professionals.       
Driven by greenhouse gas emissions reduction      
initiatives, cities have advanced in their collection of        
municipal energy use data. Implementation programs in       
municipal property portfolios require measurement and      
verification to validate the prudent use of public funds.         
This paper reports on work conducted over four years to          
develop an automated system for generating and using        
inverse-modeled energy data in a large municipal setting.  

State of the Art and Deficiencies. While access to         
15-minute electricity interval data is increasing, for       
larger cities, the volume of even monthly data can be a           
hindrance to its effective use. 
The most widely used platform for energy data        
aggregation is ENERGY STAR Portfolio Manager      
(PM). While useful for comparative purposes, PM does        
not provide statistically-validated models for     
measurement and verification (M&V) of change      
programs such as energy retrofitting. For this purpose,        
inverse modeling at the Whole Facility level (IPMVP        
Option C) is the state of the art. Such models are           
commonly generated on a building-by-building basis. 

Municipal Portfolio Programming. ​New York City has       
an aggressive energy management program for its       
approximately 4,000 municipal buildings, which     
includes energy standards for new construction and       
major rehabilitations, retrofitting, retro-commissioning,    
and training. Tasked with establishing an      
industry-standard approach to M&V for the portfolio’s       
energy reduction initiatives, we quickly discovered the       
need to automate the inverse modeling process in order         

to reach scale in an acceptable timeframe.  

Objectives and Modeling Approach  
The fundamental objective of the work was to provide an          
industry-standard basis for evaluating NYC’s municipal      
energy retrofit program. This process required a       
statistically-validated linear regression model for whole      
facility energy use, per the requirements of the        
International Performance Monitoring and Verification     
Protocol (IPMVP) and ASHRAE Guideline 14. The       
methodology set forth in the ASHRAE Inverse Modeling        
Toolkit (Kissock, 2003) was applied. It should be noted         
that, for retrofits that are not projected to achieve savings          
of at least 10% of total metered usage, Retrofit Isolation          
with parameter measurement (IPMVP Options A & B) is         
generally recommended, as whole facility savings cannot       
be reliably differentiated from the normal year-to-year       
fluctuations in building energy use. Future work will        
attempt to enhance the utility of the whole facility         
method through the use of interval data and associated         
methods.  
Our objectives did not include improvements to the        
ASHRAE Inverse Modeling procedure. Rather, our      
primary goal was to facilitate batch processing of large         
sets of building energy data using this methodology. We         
purposely maintained the integrity of those calculations       
without modification so as to preserve the claim to         
“industry standard” method, as prescribed by our       
sponsor. To introduce calculation changes, even if       
improvements, would subject the entire effort to       
extensive scrutiny, review and delay. 
During the course of the work, we realized that, in          
addition to serving as the basis for M&V, the method          
could also be used to provide diagnostic insights into         
building performance and potential systems     
improvements (Kissock 2004). This became an      
important objective of the work as the client agency         
Energy Managers are, at present, much more involved in         
energy efficiency project identification than M&V. This       
balance is expected to change over the next few years as           
more projects are implemented and the M&V program        
progresses.  

A third, less developed, objective was to be able to use           
inverse models in conjunction with physics-based      
forward models. In work with other teams (Eicker, 2016;         
Schumacher, 2017) we discovered that the partitioning       



 

of baseload versus weather-sensitive loads in      
change-point models can be useful to validation and        
calibration of forward models. Simulated monthly      
consumption data generated through forward modeling      
can be run through the inverse modeling method, then         
compared to results based on actual data. Match of         
modeled results for baseload and weather-sensitive loads       
can then point to distinct variables to be tuned. 

For example, poor calibration of modeled electricity may        
be due to air-conditioning (weather-sensitive) or lighting       
power density (baseload), or a combination of the two;         
use of the change-point models can help demonstrate        
when an appropriate calibration fit is achieved. We        
suggest that this procedure may be significant to        
improving the accuracy of forward modeling conducted       
on large numbers of buildings at an urban scale (Pang,          
2013; Eicker, 2017) and may be useful as part of energy           
model auto-tuning techniques (Chaudhary and New      
2017). .  

Methods  
After an initial two years of manual processing using         
industry-standard tools, including Energy Explorer     
(Kissock, 2000), a semi-automated batch-processing     
procedure was developed. Visual Basic (VB) scripts       
were used to facilitate import of CSV data files from the           
NYC utility database into a spreadsheet environment       
(MS Excel) and to clean and prepare data. Cleaned data          
files were batch-processed using Energy Explorer, and       
the output was used to recreate change-point linear        
regression models in Excel. A scripted algorithm used a         
series of three tests -- a shape test, a t-test and a data             
population test -- to select the best-fitting model (2-, 3-          
,4- or 5-parameter) (Paulus, 2014), and the model        
coefficients and statistical metrics were displayed along       
with the model visualization and compared to identify        
best and worst performers. 

Batch-Process Automation​. In Year 4, the modeling       
process was fully automated using a custom-built Python        
application, PyBEMA, linked to a database management       
system (MS Access). Scripts in Access prepare the data         
and perform several initial calculations, and simple       
queries allow for selected processing of data by date         
range, agency or other filters. Change-point models are        
generated in PyBEMA using a piecewise least-squares       
linear regression method, and processed data is then        
pushed to an enhanced Excel dashboard that runs the         
model selection algorithm, chooses the best-fitting      
model, combines regression results with building      
metadata, and creates a series of data visualizations        
(Figures 1 and 2) and tables with associated metrics for          
both electricity and thermal energy (natural      
gas/steam/fuel oil ) usage. Model outputs were      1

1 Metered fuel oil consumption data is not available at          
this time; as such, fuel oil data is only modeled as           
pertains to interruptible natural gas service. 

systematically checked against independent runs of the       
same test data using Energy Explorer, to ensure        
accuracy. 
Timeframes. ​Our early modeling efforts used monthly       
energy consumption data for a 12-month period, with        
approximate billing period start and end dates. The lack         
of availability of actual billing period dates was a         
significant source of uncertainty in these early models,        
as it was impossible to accurately match up outdoor air          
temperature (OAT), our independent variable, with      
energy consumption; this effect was especially      
pronounced during shoulder months, when OAT is most        
variable. This issue was addressed in Year 3, when we          
were provided with more granular utility data that        
included actual billing period dates. Although this       
improved the model output, another confounding      
challenge was the all-too-common presence of estimated       
meter readings in the electricity and natural gas data.         
Even one or two estimated data points in a 12-month          
period was enough to skew a model and negatively         
affect goodness-of-fit metrics. 
While researching methods to address timeframe issues,       
we learned of the “sliding NAC analysis” technique        
(Lammers, 2011). This methodology uses typical      
meteorological year (TMY2) data to generate normalized       
annual consumption (NAC) data; the goal is to filter out          
the “noise” of variable annual weather patterns so that         
the “true” energy signatures of facilities can be        
discerned. The NAC data is then used to generate         
change-point models for sets of sequential 12-month       
periods, and changes in the model parameters (i.e.,        
baseload, change-point(s) and cooling/heating    
sensitivity) from one model to the next are used as          
indicators of the factors that are driving energy        
consumption patterns. 
We ran sliding NAC analysis on 24- and 36-month         
datasets for courthouse facilities and analyzed the       
changing parameters. Initial trials indicated the potential       
to contribute valuable diagnostic insights into building       
performance; so, the technique was added to the        
PyBEMA development roadmap for incorporation into      
future versions. One immediate result of this work,        
however, was our adoption of a longer usage period (24          
months) for baseline modeling for performance analysis;       
we continue to use 12 months of pre- and         
post-installation data for Whole Facility M&V following       
IPMVP guidelines. 
Data Visualization and Usability Testing. PyBEMA      
generates a data visualization “dashboard”, a sample of        
which is provided as Appendix A. The dashboard        
displays visualizations and metrics for one facility at a         
time, as selected via a dropdown list. Currently        
implemented in Excel, this user interface provides       
another important area for testing, beyond the       
quantifiable accuracy of results. To date, anecdotal user        
feedback has been collected from energy management       
personnel during one-on-one portfolio analysis review      



 

meetings and is discussed further below. Formal       
usability tests of the dashboard are scheduled to be         
conducted later this year with NYC client agency Energy         
Managers; results are anticipated to be available for        
presentation in summer 2017.  
We are currently working to migrate the dashboard user         
interface to a Python interactive visualization library that        
presents very large datasets in a (modern) web browser         
environment; a prototype will be completed in spring        
2017. 

Results 
The PyBEMA application readily processes hundreds of       
facilities at a time, producing individual change-point       
models and associated diagnostics that can then be        
accessed in the standalone Excel dashboard (shown in        
Appendix A). The dashboard is designed to present the         
information that is most relevant for a high-level        
assessment of facility energy consumption, for both       
electricity and available thermal fuel data, such as site         
and source EUIs, time series graphs, change-point       
models, energy use breakdowns and CO​2​e emissions. 
 
Statistical Metrics. Figure 1 shows typical output, in         
this case a 3-parameter cooling (3PC) model for        
electricity, with data points and best-fit line.  
 

 
Figure 1. Sample visualization: electricity change-point model       
for a NYC municipal office building. 

 

Figure 2 shows further elements, based on combined        
electricity and thermal energy, using LEAN      
methodology ( that are automatically displayed as part of         
the dashboard interface. 

 
Figure 2. Sample visualization: combined energy metrics for a         
NYC municipal office building. 

Note the statistical measures of goodness-of-fit in the        
lower right of Figure 1; these are used to evaluate the           
baseline models, in line with industry standards. First,        
the coefficient of determination (R​2​), represents the       
proportion of variation in the dependent variable that can         
be explained by the independent variable. Here, R​2        

indicates how well the regression model can predict        
future energy consumption based upon OAT. Our work        
requires that R​2 ≥ 0.75 for the model to be valid; lower            
values signify that factors other than OAT are driving         
energy consumption. 

The second statistical metric used is the coefficient of         
variation of the root mean square error (CV-RMSE),        
defined as the root mean square error (RMSE) divided         
by the mean of the measured data. CV-RMSE describes         
how well the model fits the data; the higher its value, the            
more scattered the data points appear around the best-fit         
regression line and vice versa. Our work requires        
CV-RMSE ≤ 20% for the model to be valid; however,          
we note that we frequently find these values to be higher           
in natural gas/steam models. Similar findings have been        
attributed by others to high variations in the amount of          
outdoor air and related factors during shoulder season        
months (Matutinovic, 2014); our research into this       
phenomenon is ongoing. 

Our current work in this area involves residual analysis         
and testing of additional statistical metrics that may be         
used to fine-tune model selection and the identification        
and elimination of data outliers. 

Lean Energy Analysis (LEA). ​Our work incorporates       
the statistical Lean Energy Analysis (LEA) technique       
(Kissock, 2004; Abels, 2011), which uses regression       
coefficients from the change-point models to compare       
performance across portfolios of buildings. LEA is       
applied to peer facilities based upon Commercial       
Buildings Energy Consumption Survey (CBECS)     



 

building categories (e.g., office buildings, hospitals or       
schools). Facilities are ranked based upon the value of         
model parameter coefficients: baseload, change-point(s),     
and heating and cooling slopes. Quartiles are used to flag          
best and worst performers for each parameter within a         
peer group, and results are visualized using a graphic         
rating scale (Figure 3).  

 
Figure 3. Sample visualization: electricity graphic rating scale        
used to display facility rankings. 

LEA is also used to generate analysis of NYC client          
agency portfolios, such as all facilities belonging to the         
NYC Sanitation Department or the NYC Fire       
Department (FDNY). In this use case, dashboard metrics        
are not used to gauge comparative performance between        
facilities, as there is no basis for comparison across         
building typologies (e.g., FDNY vehicle repair shop vs.        
FDNY firehouse). Rather, the dashboard affords an       
agency Energy Manager a comprehensive look at the        
entire portfolio, and helps pinpoint the largest energy        
consumers and identify potential efficiency     
opportunities. 

Note that we have observed that agency Energy        
Managers are more interested in the ranking of a given          
facility against its NYC agency peers, rather than against         
a wider population of peers nationally, as indicated by         
PM scores.  
Diagnostics. ​The change-point models, as discussed      
further below, can be used for building performance        
diagnostics to identify areas of likely performance       
deficiencies for further investigation. For example, a       
high heating or low cooling change-point may indicate a         
need to investigate a building for infiltration, ventilation        
rates, outside air damper operations and/or building       
insulation conditions; a relatively high baseload might,       
instead, suggest investigation of equipment scheduling      
and continuous loads.  
The ability to characterize and filter buildings by        
change-point, slope and baseload parameters enables the       
creation of quad charts that sort and help identify best          
and worst performing facilities along specified      
dimensions. Figure 4 shows the comparison of multiple        
facilites with regard to cooling change-point and cooling        

senstivity; the quadrants are delineated by the median        
value for each of these parameters. As an example,         
facilities with a high cooling change-point and low        
cooling sensitivity (those in the upper left quadrant) are         
considered best performers; while, those in the lower        
right quadrant are considerd worst, as they exhibit a low          
cooling change-point and high cooling sensitivity. 

 
Figure 4.  Sample visualization: quad chart displaying multiple 
facilities by change-point vs. cooling sensitivity (slope). 

This portfolio-view quad chart format has yielded very        
positive response in initial informal trials with energy        
managers. Further work in the use of multiple        
parameters for performance diagnosis is ongoing      
(Ascazubi, 2017).  

Discussion and Analysis of Results 
PyBEMA will attempt to model all facility data included         
in a batch run, but there are usually a number of models            
that are not modeled due to a poor R​2 value (< 0.75). As             
mentioned previously, a low R​2 indicates that the        
independent variable (OAT) does not adequately explain       
the energy usage, so the model is invalid. In our earlier           
work, we also used the CV-RMSE value as a validity          
threshold; however, the higher values we tend to see in          
thermal energy models caused us to reconsider the        
affected models. Facilities that do not pass are listed,         
with associated metrics, under separate tabs (i.e., Poor        
Electricity Models, Poor Fuel Models). 
Interpreting Poor Fit. There are some common causes        
for poor models, some of which result from data quality          
issues, and others that may indicate something       
significant about building operations.  

We do not usually see facilities with missing data, but          
we do see estimated utility meter readings quite often.         
Estimated readings show a characteristic pattern readily       
identified in the time series chart that contributes to poor          
fit statistics. Interruptible gas with a lack of fuel oil          
consumption data is another fairly common situation that        
can be addressed: fuel oil delivery data for a 12-month          
period is aggregated and allocated to specific (known)        



 

days and hours of interruption, then modeled together        
with the natural gas data. Fuel oil-only sites represent a          
more difficult problem, as in most cases only delivery         
history is available; experiments with oil metering       
schemes have revealed the complexities in reaching a        
uniformly applicable solution for digitized metering. 
Once data problems are ruled out, operational issues        
must be considered. With public school facilities, for        
example, vacation and summer closures commonly      
result in poor electricity data fit with OAT alone; a          
second independent variable, such as occupancy or       
operating hours, needs to be introduced. Multivariate       
regression analysis is enabled in the PyBEMA tool, but         
forward-looking work will involve testing its use with        
the most appropriate variables and applicable situations. 

Interpreting Baseload. ​Baseload is identified as a       
corollary of change-point, and is quantified as the value         
of that point at the y-axis (i.e., y-intercept). In order to           
compare baseloads across facilities, usage is normalized       
by gross square footage. For certain kinds of facilities,         
normalization by building volume may be preferable;       
this is a construct that will be tested in future work.  

If there is a natural gas or steam baseload, it is most            
often a year-round service hot water load, often        
relatively small in commercial/institutional facilities. A      
high baseload of this type can usually be interpreted to          
represent one of a relatively small set of services:         
domestic hot water, pool heating, cooking or laundry.        
Thermally-driven cooling (i.e., steam turbine chillers,      
gas engine-driven chillers, absorption units) may      
produce what looks like a high fuel baseload (and would          
most likely be modeled using a 5-parameter       
change-point model); techniques are being developed to       
diagnose and separate this case from high thermal        
baseload. 

Electricity baseload usually represents the predominant      
portion of electricity use, typically comprised of lighting,        
plug loads and ventilation (i.e., fans), so high baseloads         
can usually be traced back to unusually high usage in          
one or more of these functions; a facility with a large           
data center or other 24/7 operation (e.g., emergency        
services call centers) will typically have a high baseload.  
The absolute value of baseload (per square foot) is a          
useful indicator for the energy manager. The relationship        
of baseload to heating and cooling loads can also be used           
to interpret building equipment usage and operations.       
The total relative usages of baseload, heating and        
cooling can help guide the energy manager on where to          
prioritize efforts.  
 
Interpreting Change-points. ​Change-point is    
analogous to (but not exactly representative of) a        
facility’s thermal balance point, above which energy is        
used for cooling and below which energy is used for          

heating. A change-point is considered poor when it is         2

too low for cooling (say, 55°F) and too high for heating           
(say, 65°F), indicating unusually extended hours of       
heating and/or cooling. With cooling, at lower       
temperatures the facility should be taking advantage of        
free cooling from economizer operation at air handling        
units and/or chiller plant cooling tower; a water-side        
economizer cycle uses incremental energy, but much less        
than mechanical cooling, and an air-side economizer       
even less so. In looking at combined energy, the         
dashboard displays both electricity and natural gas/steam       
models on the same plot, so that instances of         
simultaneous heating and cooling can be identified (i.e.,        
when heating change-point is higher than cooling       
change-point).  

Interpreting Slopes​. ​In a model with cooling energy,        
the slope of the line indicates how much additional         
energy is consumed as the outdoor air temperature        
increases; conversely, in a model with thermal energy,        
the slope indicates how much additional energy is        
consumed as the outdoor air temperature decreases. The        
steepness of the slope can thus provide an indication of a           
building’s overall heating or cooling efficiency, but it is         
important to consider other factors, like the total number         
of months of heating or cooling.  

It is tempting to interpret this slope as the mechanical          
system efficiency (Donnelly, 2013), but this is incorrect,        
as the building ventilation and conduction conditions are        
also implicated. Some of our work seems to suggest that          
the change-point can be a dominant factor in the         
magnitude of the slope. This is to say that, given an           
energy use for the maximum load condition, the slope is          
then established by the temperature location of the        
change-point. We are currently testing this concept with        
a combination of forward and inverse modeling. It has         
been suggested that, in order to compare overall building         
efficiencies by use of the temperature-sensitivity slope,       
we must first normalize the respective change-points.       
Future publications will address this analysis. 
Initial User Experience Testing Results​. As described       
above, we are in an early stage of testing with users.           
Initial experience indicates that, when presented with       
change-point model visualizations, users initially focus      
most strongly on the value of the heating/cooling        
change-point and the magnitude of heating/cooling      
slopes. Change-points tend to be interpreted as directly        
indicative of thermostat set-points for initiating heating       
or cooling; effort is necessary to ensure a proper         
understanding as representing something more like a       
building balance point, indicative of mass and insulation        
in building construction. 

2 For electricity, this is true for 3-parameter cooling,         
4-parameter and 5-parameter models; for natural      
gas/steam, this is true for 3-parameter heating,       
4-parameter and 5-parameter models. 



 

Similarly, users tend to interpret slopes as direct proxies         
for heating/cooling system efficiency, especially when      
peer group buildings have significantly contrasting      
slopes. We have found in our work that this         
characterization is not entirely accurate, as the slope may         
be affected by the change-point temperature, the total        
number of months with seasonal energy consumption,       
and other model characteristics. 
Finally, we have observed that this primary focus on         
change-point and slopes often causes users to overlook        
the magnitude of the baseload, visualized as the value at          
which the change-point intercepts the y-axis. This is of         
concern, since the baseload often represents the largest        
area of energy use, especially for electricity.  
 

Conclusion 
A programmed solution is developed for usability of        
energy data sets in large building portfolios. An        
automated batch-processing tool has been developed and       
tested to produce statistically-validated baseline models      
from monthly energy consumption data. The models       
provide the basis for industry-standard whole facility       
measurement & verification (M&V) for a portfolio-wide       
energy retrofit program. Beyond this primary objective,       
the energy data tool also provides energy managers with         
evaluative indicators for individual building and      
portfolio-wide comparative energy use, to support and       
improve decision-making and focus for investigations.      
Testing is in process with energy managers and further         
versioning is anticipated. 
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